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Proteome Generation Pipeline 

 

Hardware Requirements 

 

Given the high memory requirements of some of the pipeline steps – especially when using 

large input files – we recommend the use of a Linux server to run each of the steps described 

below. In our own implementation using the Biowulf high-performance computing resource at 

NIH (https://hpc.nih.gov), runs required 100 GB to 200 GB of memory and 16 to 32 CPUs on 

average for the Trinity step to finish in a timely manner (1 to 3 days). However, depending on 

the size of the input data set, it was sometimes necessary to increase the memory allowance 

to 800 GB. For some of these memory-intensive runs, the run time for the full pipeline ranged 

from 3 to 8 days. The worked example from this manual required ~170 GB of disk storage; 

users should allocate more disk storage for larger data sets. 

 

Software Components  

 

fasterq-dump Component of the SRAtoolkit, at https://github.com/ncbi/sra-tools (v 2.9.6) 

FastQC https://github.com/s-andrews/FastQC (v 0.11.8) 

Trim Galore! https://github.com/FelixKrueger/TrimGalore (v 0.6.5) 

Rcorrector https://github.com/mourisl/Rcorrector (v 1.0.3.1) 

Trinity https://github.com/trinityrnaseq/trinityrnaseq/releases (v 2.9.0) 

TransDecoder https://github.com/TransDecoder/TransDecoder/releases (v 5.5.0) 

BUSCO https://gitlab.com/ezlab/busco/-/releases (v 4.0.2) 

InterProScan https://github.com/ebi-pf-team/interproscan (v 5.33-72.0) 

 

The version numbers of each software component used for the current AniProtDB release 

are shown above. Please note that you may need to work with your system administrator to 

ensure that the above tools are available in your path. The parameters suggested below for 

individual tools have worked well for our datasets but can be adjusted as needed for specific 

use cases. 

 

 

https://github.com/ncbi/sra-tools
https://github.com/s-andrews/FastQC
https://github.com/FelixKrueger/TrimGalore
https://github.com/mourisl/Rcorrector
https://github.com/trinityrnaseq/trinityrnaseq/releases
https://github.com/TransDecoder/TransDecoder/releases
https://gitlab.com/ezlab/busco/-/releases
https://github.com/ebi-pf-team/interproscan


 

   2 

Instructions 
 

1. Download files of interest from SRA or any public repository. Alternatively, the user may 

use their own RNA-seq data sets. 

 

To download files from an SRA project using a data set accession number, users should 

use the fasterq-dump tool with the --split-3 flag to ensure that if a data set 

contains unpaired reads, they will be written to a separate file. Users should also confirm 

that the accession numbers correspond only to RNA-seq data sets, as some SRA 

BioProjects also include genomic data within the same BioProject. For example, the 

Hoilungia hongkongensis SRA project PRJNA377631 contains three experiment sets, but 

only one of these data sets (SRR5311041) contains RNA-seq data.  

 

Keep in mind that a BioProject may contain more than one RNA-seq data set; if this is the 

case, and if the additional data sets are of biological interest, each of the data sets will 

need to be processed separately through Steps 1-5 of this pipeline. All output files 

resulting from Step 5 will then be combined at the point of transcriptome assembly (Step 

6).  

 

Example usage: 

 

$ fasterq-dump --split-3 SRR5311041 

 

In order to prepare these files for a later step in the pipeline that uses Trinity, the headers 

of the paired-end RNA-seq files need to have /1 and /2 appended to their sequence 

headers. We suggest using awk to edit the sequence headers and then overwriting the 

original dumped files to save space: 
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$ awk '{ if (NR%4==1 || NR%4==3) { print $1"/1" } else { print } }'   

  SRR5311041_1.fastq > temp_SRR5311041_1.fastq 

$ awk '{ if (NR%4==1 || NR%4==3) { print $1"/2" } else { print } }'     

  SRR5311041_2.fastq > temp_SRR5311041_2.fastq 

$ mv temp_SRR5311041_1.fastq SRR5311041_1.fastq 

$ mv temp_SRR5311041_2.fastq SRR5311041_2.fastq 

 

2. Assess the quality of the sequencing reads 

 

FastQC provides a modular set of analyses for assessing the overall quality of raw 

sequencing data, flagging significant errors that may have arisen during the sequencing 

process. Additional documentation can be found on the FastQC web site, at 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ . 

 

Example usage: 

 

$ mkdir fastqc 

$ fastqc -o fastqc/ SRR5311041_1.fastq SRR5311041_2.fastq    

 

The FastQC output report (in HTML format) will be written to the output directory chosen 

by the user. In the example above, the output files will have the suffix _fastqc.html 

that can be opened using any web browser. It is important to check the ‘Per base 

sequence quality’ plot, which provides the distribution of quality scores across all bases at 

each position in the reads. Ideally, the plot will show all bases within the green area of the 

plot, above a pre-set quality score of 28. (As a reference, a quality score of 20 indicates a 

base call accuracy of 99%, while a quality score of 30 indicates a base call accuracy of 

99.9%.) If the distribution of quality scores is located entirely below the green area of the 

plot, the data set should be discarded. Otherwise, the data can be passed to the next step 

in the pipeline, for trimming low quality bases from the ends of each read. 

 

Users should also examine the ‘Overrepresented sequences’ table, which displays 

sequences that occur in more than 0.1% of the total number of reads. If there are 

overrepresented sequences, users should do a quick BLAST search of these sequences 
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against the GenBank nucleotide (nt) database to assess possible sources of 

contamination; these may include ribosomal sequences, microbial sequences, and host 

RNA. Our own rule of thumb is to discard the data set if these overrepresented sequences 

represent more than 5% of total reads.  

 

3. Perform quality and adapter trimming  

 

Using the results of the FastQC analysis as a guide, users should run Trim Galore to 

remove low-quality bases, overrepresented sequences, and adapters from the ends of 

reads. 

 

Example usage: 

 

$ mkdir trimgalore 

$ cd trimgalore 

$ trim_galore --paired -q 30 --stringency 5 --length 70   

  ../SRR5311041_1.fastq ../SRR5311041_2.fastq 

 

Using the parameters above, Trim Galore will trim bases from each end of the read when 

the per-base quality score is below 30 and discard reads (and their mate pairs) if the 

reads are shorter than 70 bp after trimming and adapter removal. The -a and -a2 flags 

let the user specify adapter sequences or specific overrepresented sequences that should 

be removed from the files. The output files will have the suffix _val_1.fq and 

_val_2.fq. 

 

4. Assess the quality of trimmed sequencing reads 

 

Following the Trim Galore step, a second round of FastQC should be carried out to 

ensure that the overall read quality has improved after trimming.  
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Example usage: 

 

$ mkdir fastqc_2ndRound 

$ fastqc -o fastqc_2ndRound/ SRR5311041_1_val_1.fq   

  SRR5311041_2_val_2.fq 

 

As in Step 2, data sets with low quality scores or a high percentage of overrepresented 

sequences should be discarded at this point. See above for details. 

 

5. Perform error correction to correct sequencing errors 

 

For data sets meeting the above quality control criteria, Rcorrector was then used to 

further optimize the individual reads by correcting random sequencing errors prior to 

performing de novo transcriptome assembly. 

 

Example usage: 

 

$ mkdir rcorrector 

$ cd rcorrector 

$ run_rcorrector.pl -1 ../SRR5311041_1_val_1.fq -2   

  ../SRR5311041_2_val_2.fq -t 16 -k 31 

 

The -t flag sets the number of threads to use and the -k flag specifies the kmer length. 

The output files will have the suffix .cor.fq. 

 

6. Transcriptome assembly  

 

Trinity is used to perform de novo assembly of the trimmed and error-corrected transcript 

sequences created in Steps 1-5.  
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Example usage: 

 

$ mkdir trinity 

$ cd trinity 

$ Trinity --seqType fq --max_memory 240G --left   

  ../SRR5311041_1_val_1.cor.fq --right ../SRR5311041_2_val_2.cor.fq  

  --CPU 12 --min_kmer_cov=2 --SS_lib_type FR --output   

  trinity_Hhongkongensis 

 

The flag --min_kmer_cov sets the minimum number of k-mers necessary for a 

transcript to be considered real and flag --SS_lib_type specifies the orientation of 

the paired-end reads. Of note, and depending on the size of the input files, the  

--max_memory flag may need to be increased to at least 800 GB. In our experience, run 

times may be as long as eight days, depending on the data set. Once the run is complete, 

the output transcript file will have the filename Trinity.fasta and be located within the 

trinity_out_dir directory by default. Alternatively, the output directory can be 

specified using the --output flag. 

 

In cases where there are multiple RNA-seq data sets from a single BioProject being 

analyzed, transcripts from each set of left and right reads can be combined at this step by 

specifying the files containing the results of Step 5 as a comma-separated list, as follows:  

 

$ Trinity --seqType fq --max_memory 240G --left 

../SRR5821541_1_val_1.cor.fq,../SRR5821542_1_val_1.cor.fq,../SRR5821543_

1_val_1.cor.fq,../SRR5821544_1_val_1.cor.fq,../SRR5821545_1_val_1.cor.fq

,../SRR5821546_1_val_1.cor.fq,../SRR5821547_1_val_1.cor.fq,../SRR5821548

_1_val_1.cor.fq,../SRR5821549_1_val_1.cor.fq,../SRR5821550_1_val_1.cor.f

q,../SRR5821551_1_val_1.cor.fq,../SRR5821552_1_val_1.cor.fq,../SRR582155

3_1_val_1.cor.fq,../SRR5821554_1_val_1.cor.fq --right 

../SRR5821541_2_val_2.cor.fq,../SRR5821542_2_val_2.cor.fq,../SRR5821543_

2_val_2.cor.fq,../SRR5821544_2_val_2.cor.fq,../SRR5821545_2_val_2.cor.fq

,../SRR5821546_2_val_2.cor.fq,../SRR5821547_2_val_2.cor.fq,../SRR5821548

_2_val_2.cor.fq,../SRR5821549_2_val_2.cor.fq,../SRR5821550_2_val_2.cor.f

q,../SRR5821551_2_val_2.cor.fq,../SRR5821552_2_val_2.cor.fq,../SRR582155
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3_2_val_2.cor.fq,../SRR5821554_2_val_2.cor.fq --CPU 32 --min_kmer_cov=2 

--SS_lib_type FR --output trinity_Uunicinctus 

 

7. Identifying open reading frames and translation to proteins 

 

TransDecoder is used to identify open reading frames within the transcripts from the de 

novo assemblies generated in Step 6.  TransDecoder.LongOrfs detects the open 

reading frames, and TransDecoder.Predict then generates protein translations for 

each isoform. 

 

Example usage: 

 

$ mkdir transdecoder 

$ cd transdecoder 

$ TransDecoder.LongOrfs -t ../trinity_Hhongkongensis/Trinity.fasta  

$ TransDecoder.Predict -t ../trinity_Hhongkongensis/Trinity.fasta 

 

The main output file of this step is Trinity.fasta.transdecoder.pep, which is 

located in the working directory. 

 

8. Filter out incomplete and redundant proteins to create the final proteome file 

 

To ensure that accurate BUSCO completeness scores are generated in the next step, it is 

important that each proteome file contains one and only one copy of each full-length 

protein, as having more than one copy of a given protein sequence can artificially inflate 

the BUSCO score.  
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Example usage: 

 

$ mkdir proteome 

$ cd proteome 

$ awk '/^>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END     

{printf("\n");}' < ../Trinity.fasta.transdecoder.pep | sed "1d" >   

Trinity.fasta.transdecoder_singleLine.fasta  

$ perl filter_redundancy.pl Hhongkongensis 

 

The awk command converts a multi-line FASTA file to a single-line FASTA file, the 

required format for the filtering script filter_redundancy.pl . This script reads in the 

file Trinity.fasta.transdecoder_singleLine.fasta, removes any proteins that 

do not have a start and stop codon, and creates a new proteome file, 

Hhongkongensis_proteins.fasta, using the single parameter (the species name) 

indicated on the command line as the basis for naming the file. The output of this step is 

the final proteome file for this species. 

 

9. Assessing proteome completeness 

 

In the third and final quality control checkpoint, BUSCO is used to search for the presence 

of a core set of conserved genes in the final proteome file. Here, a BUSCO score 

threshold of 70% is applied, allowing the user to retain proteomes from less-represented 

phyla as a way to increase taxonomic breadth.  

 

Example usage: 

 

$ mkdir BUSCO 

$ cd BUSCO 

$ busco -i ../Hhongkongensis_proteins.fasta -c 8 -o Hhongkongensis  

  -l metazoa_odb10 -m proteins 

 

For this analysis, the set of core metazoan genes available within BUSCO 

(metazoa_odb10) was used to assess the completeness of the final proteome file, 
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Hhongkongensis_proteins.fasta. The -m flag specifies the input data are proteins 

and the -o flag specifies the output directory. Using the commands above, the following 

results were generated: 

 

 

With a completeness (C) score of 89.5%, the final proteome, created in Step 8, passes our 

stated quality threshold of 70%. 

 

10. Identification of protein domains 

 

InterProScan is a tool that integrates predictive information about the function of a protein 

from a number of partner resources, allowing the user to determine whether the protein 

belongs to specific protein families and which protein domains are found within its 

sequence. The command line version of InterProScan enables the analysis of an entire 

proteome per run. 

 

Example usage: 

 

$ cd ../ 

$ ./interproscan.sh -appl CDD -t p -f tsv -pa -goterms   

  -iprlookup -i Hhongkongensis_proteins.fasta   

  -o interproscan_Hhongkongensis_CDD_results.txt 

 

In the example above (and for the AniProtDB proteomes), the Conserved Domain 

Database (CDD) was chosen as the reference domain database and is specified using 

the --appl flag. CDD content includes NCBI-curated domains, which use three-

dimensional structural information to explicitly define domain boundaries; CDD also uses 
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models from external source databases (Pfam, SMART, COG, PRK, and TIGRFAMs) to 

reliably detect protein domains. 

 

The -t flag specifies the type of molecule (p for protein) and the -f flag specifies the 

format of the output file (here, tsv for tab-separated values). The -pa and -goterms 

flags can be used to include pathway annotations and Genome Ontology (GO) term 

annotations, respectively. Both of these flags require the use of -iprlookup in the 

command in order to include InterPro annotations in the output file. The -o flag specifies 

the name of the output file. The resulting file, 

interproscan_Hhongkongensis_CDD_results.txt, can be opened using Excel 

and can also be used as input to the Perl script described in the next step. This output file 

contains the list of protein domains found in each protein. 

 

11.  Retrieving proteins containing a domain of interest 

 

The script parse_interproscan.pl can be used to retrieve protein sequences 

containing a domain of interest. The script requires the accession number of the domain, 

the species name (used to generate the output file and output directory), the final 

proteome file, and the InterProScan results file as input. 

 

Note: For this step, the input proteome file needs to be converted to single-line format if it 

is not already in that format. To convert a multi-line FASTA file into a single-line FASTA 

file, issue the following command prior to proceeding with this step: 

 

$ awk '/^>/ {printf("\n%s\n",$0);next; } { printf("%s",$0);} END  

  {printf("\n");}' < infile.fasta | sed "1d" > outfile.fasta 

 
Example usage: 
 

$ perl parse_interproscan.pl -d cd00934  

  -s "Hoilungia hongkongensis" -f Hhongkongensis_proteins.fasta  

  -i interproscan_Hhongkongensis_CDD_results.txt 
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The -d flag specifies the protein domain of interest, while the -s flag specifies the name 

of the species and also names the output directory. The proteome file and the 

InterProScan files are specified with the -f and -i flags, respectively. 

 

In this example, the domain of interest is cd00934 (PTB, a phosphotyrosine-binding 

domain). This script will create a directory called 

Hoilungia_hongkongensis_cd00934/ and a file named 

output_Hoilungia_hongkongensis_cd00934_proteins.fasta that contains all 

H. hongkongensis proteins that contain this domain (six, in this case).  

 

Note that sequence titles generated by parse_interproscan.pl contain information 

about the domains present within each protein sequence:  

 

>Hhongkongensis_21824 LengthOf_303aa_1X_cd00934 

or 

>Hhongkongensis_5066 LengthOf_759aa_1X_cd11862_AND_2X_cd00992 

 

In these two examples, the length of the input sequence is shown in the definition line 

(303aa and 759aa, respectively). In the first case, one occurrence of the cd00934 was 

found, as indicated by the 1X preceding the CDD accession number. The second protein 

has two domains (cd11862 and cd00992), with one occurrence of the first domain (1X) 

and two occurrences of the second (2X). 

 

 

 


